
The Physics of Drought in the U.S. Central Great Plains

BEN LIVNEH

Cooperative Institute for Research in Environmental Science, and Department of Civil, Environmental,

and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado

MARTIN P. HOERLING

NOAA/Earth System Research Laboratory, Physical Sciences Division, Boulder, Colorado

(Manuscript received 7 October 2015, in final form 20 June 2016)

ABSTRACT

The semiarid U.S. Great Plains is prone to severe droughts having major consequences for agricultural

production, livestock health, and river navigation. The recent 2012 event was accompanied by record deficits

in precipitation and high temperatures during the May–August growing season. Here the physics of Great

Plains drought are explored by addressing howmeteorological drivers induce soil moisture deficits during the

growing season. Land surfacemodel (LSM) simulations driven by daily observedmeteorological forcing from

1950 to 2013 compare favorably with satellite-derived terrestrial water anomalies and reproduce key features

found in the U.S. Drought Monitor. Results from simulations by two LSMs reveal that precipitation was

directly responsible for between 72% and 80% of the soil moisture depletion during 2012, and likewise has

accounted for the majority of Great Plains soil moisture variability since 1950. Energy balance considerations

indicate that a large fraction of the growing season temperature variability is itself driven by precipitation,

pointing toward an even larger net contribution of precipitation to soil moisture variability.

To assess robustness across a larger sample of drought events, daily meteorological output from 1050 years

of climate simulations, representative of conditions in 1979–2013, are used to drive two LSMs. Growing

season droughts, and low soil moisture conditions especially, are confirmed to result principally from rainfall

deficits. Antecedent meteorological and soil moisture conditions are shown to affect growing season soil

moisture, but their effects are secondary to forcing by contemporaneous rainfall deficits. This understanding

of the physics of growing season droughts is used to comment on plausible Great Plains soil moisture changes

in a warmer world.

1. Introduction

The occurrence of drought, broadly understood to

be a condition of deficient moisture in the land surface

(e.g., Wilhite 1987), is associated with agricultural loss,

water resource shortfalls, and other economic impacts.

The Great Plains is a region of national agricultural

importance that experiences its rainy season (May–

August) coincident with its growing season. Drought

and climatic variability during this season can be far

reaching, as dryland (nonirrigated) farming is regionally

common (Dhuyvetter et al. 1996). Cook et al. (2007)

highlight that the climate of the Great Plains is transi-

tional between the humid east and the arid west. His-

torically they note that this led to conflicting reports of

the climate during early expansion of the western

United States, as inhospitably arid (the ‘‘Great Ameri-

can Desert’’) or ideally humid for agriculture (the

‘‘garden myth’’). In fact, the region has been prone to

both extended wet and dry periods that have been

identified using tree-ring chronologies in the paleo pe-

riod (Woodhouse andOverpeck 1998; Cook et al. 2007).

Even the last century includes notable droughts (e.g.,

1930s and 1950s) as well as pluvial periods of abundant

summer rainfall more recently (Wang et al. 2009).

Yet, despite a long history of drought over the Great

Plains, identification and prediction of drought devel-

opment remain a challenge (e.g., Schubert et al. 2008;
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Quan et al. 2012; Hoerling et al. 2014; Seager et al. 2014),

which may explain expansive damages and losses that

continue to accompany modern-era drought events (Luo

and Wood 2007). The typical meteorological conditions

associatedwith drought arewell known, and include large

precipitation deficits and high temperatures. Chang and

Wallace (1987) make the point that drought and heat

waves are related, in the sense that little rain tends to fall

during heat waves, and that summer droughts are gen-

erally characterized by abnormally high surface air tem-

peratures. Although these two phenomena generally

possess different time scales—with drought usually last-

ing months and heat waves usually lasting days—they are

coupled on monthly to seasonal time scales during which

precipitation and surface temperature exhibit a strong

inverse correlation, especially during summer over the

central United States (e.g., Namias 1960; Madden and

Williams 1978; Huang et al. 1996).

The inverse relationship between precipitation and

temperature has been an important signature of recent

droughts over Texas in 2011 (Hoerling et al. 2013;

Seager and Hoerling 2014) and the 2012 central Great

Plains drought (Hoerling et al. 2014; Seager et al. 2014).

The general view from these and earlier case studies

is that clouds and precipitation, through their effects

on the surface energy balance, drive high tempera-

ture. Recently, Yin et al. (2014) tested whether high

temperatures cause drought [through driving higher

evapotranspiration (ET)], or whether the thermody-

namic conditions were a consequence of drought [due to

the inverse precipitation–temperature (P–T) relation-

ship], providing evidence that affirmed dominance of

the latter process. However, a quantification of how

each of these meteorological conditions drives soil

moisture responses is still lacking. The importance of

these land surface feedbacks and coupling with the at-

mosphere over the Great Plains has been highlighted in

several studies (Georgakakos et al. 1995; Durre et al.

2000; Schubert et al. 2004; Basara et al. 2013). On a

global scale, Seneviratne et al. (2010) presented a syn-

thesis of soil moisture–climate interaction studies, fo-

cusing on both soil moisture–temperature and soil

moisture–precipitation coupling, noting the former to

be relevant for the occurrence of heat waves, particu-

larly during conditions where soil moisture limits the

total energy used by latent heat flux. They suggest that

the relationship of higher precipitation leading to higher

soil moisture can generally be considered trivial, al-

though this relationship becomes skewed when pre-

cipitation rates are extremely high or low. Importantly,

their study, along with nearly all other drought analyses,

stops short of explicitly quantifying the relationship

between temperature and precipitation during drought,

something we recognize will be regional in nature, and

which motivates the present study of the Great Plains.

The question thus remains open about the physics of

land surface moisture deficits during drought. In this

study, we explore the relationships among temperature,

precipitation, and soil moisture deficits over the central

Great Plains with the goal of providing insights into the

associative nature of these quantities in drought de-

velopment. The purpose of our analysis is to quantify

the proximal meteorological causes for drought over

the Great Plains, with a focus on the 2012 event. The

study builds upon previous investigations that con-

ducted an attribution of the causes for the meteoro-

logical conditions during summer 2012 (Hoerling et al.

2014), or regional drought drivers more generally

(Basara et al. 2013).

Here we utilize land surface models (LSMs) to di-

agnose physical causes for the soil moisture deficits that

were the immediate drivers for the unprecedented agri-

cultural losses that occurred that summer (Hoerling et al.

2014). LSMs have been applied to model drought, typi-

cally relying on simulated soil moisture deficits—driven

by observed meteorology—to characterize drought se-

verity. Comparison between the Variable Infiltration

Capacity (VIC) model (Liang et al. 1994), an LSM, and

the Palmer drought severity index (PDSI; Palmer 1965)

generally show good correspondence (Sheffield and

Wood 2008). Vicente-Serrano et al. (2015) compare

various meteorological indices of drought and find low

sensitivity of the PDSI to potential evapotranspiration

(PET) compared to other indices. They thus advise

against the application of PDSI as a drought index in

semiarid regions where PET is dominant.

Comparison of drought characterization among LSMs

[e.g., VIC, the Noah LSM (Ek et al. 2003), and theNorth

American Regional Reanalysis (NARR; Mesinger et al.

2004)] also reveals intermodel differences, especially in

their formulation of ET (Sheffield et al. 2012). A further

uncertainty concerning drought simulations using LSMs

is their dependence upon assumptions about the land

surface (e.g., soil texture, depth) and themyriad physical

process representations. However, these drawbacks are

outweighed by the essential features of LSMs, namely

explicit closure of water and energy balances, enabling a

mechanistic accounting for drought processes in time

and across space. To incorporate these model structural

uncertainties in our appraisal of the physics of drought,

two LSMs are employed. Importantly, this multimodel

approach with each LSM identically forced by pre-

scribed meteorology enables a clearer assessment of

drought drivers than in many past studies (e.g., Cook

et al. 2014, 2015; Seager et al. 2007, 2013; Dai 2013; Fu

and Feng 2014; Scheff and Frierson 2015) that analyze
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outputs from an ensemble of Coupled Model In-

tercomparison Project (CMIP) models. The latter ap-

proach confounds interpretation of robust physics

because both land surface model and meteorological

drivers are different among each CMIP model. Two

other unique features of this study are 1) decomposition

of the influences of precipitation and temperature on

Great Plains soil moisture deficit and 2) quantifying the

predictability of growing-season soil moisture using

both antecedent moisture and El Niño–Southern Os-

cillation (ENSO) phase as predictors.

Section 2 describes the historical observations, ex-

perimental methods, and LSM simulations. Also de-

scribed are the historical climate simulations for which

the physics of drought events are also diagnosed so

as to build upon the observationally based analyses.

Section 3 presents diagnosis of the 2012 observed

Great Plains drought, as well as a diagnosis of climate

model–generated droughts. A summary of results is

given in section 4, where we also discuss how un-

derstanding the physics of growing seasonGreat Plains

drought pertains to our interpretation of how the re-

gion’s soil moisture may change in a warmer world.

2. Data and methods

The experiments conducted use both observed and

simulated meteorology to drive LSMs to explore the

influences of precipitation, temperature, and ante-

cedent moisture conditions on drought in the Great

Plains. LSMs are superior for such analysis over sim-

pler drought indices [e.g., PDSI or the standardized

precipitation evapotranspiration index (SPEI)] because

they close both water and energy balances and provide

physically based representations of important storages

and fluxes of water within the land surface. Although

cold-season processes are not discussed in this analysis,

their physics are included within all LSMs and GCMs

described below.

a. Observations

The gridded historical observational dataset of

Livneh et al. (2015) is used to characterize observed

daily meteorology. The data span the period 1950–2013

and include station-based daily precipitation and daily

maximum and minimum temperature. Also, daily wind

speed is included, based on the NCEP–NCAR re-

analysis. Gridding is to a 1/168 (;6 km) spatial resolu-

tion. For purposes of intercomparison with GCM scales,

the observed data are aggregated to a 0.58 (;50 km)

resolution.

Estimates of drought can be skewed by uncertainty of

model input data (Williams et al. 2015), especially the

choice of precipitation dataset (Trenberth et al. 2014).

To provide an estimate of uncertainty in precipitation

forcing, Livneh et al. (2015) compared their product

against two others: 1) the North American Land Data

Assimilation System phase 2 (NLDAS2; Xia et al. 2012)

for the common period of 1979–2013 and 2) the Climatic

Research Unit (CRU v.3.22; Harris et al. 2014) for the

common period 1950–2013, with comparatively small

differences among products over the Great Plains rela-

tive to other parts of North America. The Livneh et al.

(2015) product is on annual average approximately

7.5mm (;1.1%) wetter than NLDAS2 and 10.7mm

(;1.5%) wetter than CRU over the study domain based

on a mean annual precipitation of 720mm.

Daily climatological values were required to drive

the LSMs for the synthetic experiments described be-

low. Minimum and maximum temperature climatol-

ogies were computed as the simple long-term mean.

For precipitation, a more sophisticated two-step ap-

proach was applied to avoid climatological ‘‘drizzle’’

that would result from simple averaging, as well as to

preserve spatially coherent precipitation patterns. The

procedure was as follows. For each of the 12 months

and for each grid point, the mean monthly precipitation

and the average number of ‘‘wet’’ days (using a 1-mm

threshold) were calculated. Next, a search was conducted

among the same month historically (1950–2013) to find

an analog month with the closest match to the mean

monthly wet days.Matching wet days was done in order

to ensure realistic spatial coherence of precipitation

events. Last, the daily values in this analog month were

scaled to match the long-term monthly mean pre-

cipitation for that month. These 12 climatological-

analog months were repeated (1950–2013) to drive model

simulations.

b. Land surface models

Simulations of historical soil moisture were made

using the VIC macroscale hydrologic model. VIC is a

physically based, fully distributed water and energy

balance model that has been successfully applied to

simulate drought both nationally and globally (e.g.,

Sheffield and Wood 2008; Sheffield et al. 2012). A full

description appears in the appendix.

An updated version of the Unified Land Model

(ULM; Livneh et al. 2011) was included for the his-

torical observed simulations. This model contains

physics largely independent of VIC and as such pro-

vides an independent estimate of hydrologic sensitivity.

Details of ULM and model updates are provided in the

appendix. ULM and VIC were both driven with the

Livneh et al. (2015) forcing data for the full period,

1950–2013.
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c. Climate model simulations

Climate simulations are based on ECHAM5 (Roeckner

et al. 2003), which was run at spectral T156 (;0.758) res-
olution with 25 vertical levels in the troposphere. These

fully forced Atmospheric Model Intercomparison Project

(AMIP) experiments impose specified observed monthly

varying sea surface temperatures (SSTs), sea ice concen-

trations (SICs), and greenhouse gas concentrations from

January 1979 to December 2013. A 30-member ensemble

of simulations was performed, in which each simulation

was subjected to the same time-evolving boundary forcing,

but begun from different atmospheric initial conditions.

The ensemble runs therefore represent a 1050-yr realiza-

tion of current climate conditions (1979–2013). Further

details of these experiments are provided in Seager and

Hoerling (2014).

The daily meteorological fields of the GCM simula-

tion are used to driveVIC (calledVIC-GCM), yielding a

1050-yr-long LSM experiment from which we extract

severe drought occurrences for further study. Severe

drought cases are based on the sample of the lowest first

percentile of simulated May–August Great Plains rain-

fall. A systematic intercomparison of VIC-GCMand the

GCM’s land surface responses is conducted to address

robustness, and the general features of antecedent and

concurrent meteorological and soil moisture conditions

are subsequently identified.

3. Results

a. Baseline historical drought simulations

The historical LSM simulation, spanning 1950–2013,

was carried out with observedmeteorology to isolate the

contributions of precipitation and temperature on soil

moisture deficits. Figure 1 presents results for the recent

2012 drought event, which we will refer to as our base-

line case for understanding the physics of drought. This

simulation is evaluated against two independent esti-

mates of soil moisture deficits during the 2012 event: the

U.S. Drought Monitor (USDM) and the terrestrial wa-

ter anomalies of the Gravity Recovery and Climate

Experiment (GRACE) satellites.

Figure 1d shows the August 2012 VIC soil moisture

deficit for a 1-m soil layer (encompassing most vege-

tation roots) and compares those to the August 2012

temperature (Fig. 1a) and precipitation (Fig. 1b)

FIG. 1. Depiction of standardized August 2012 (a) temperature and (b) precipitation anomalies relative to

a 1981–2010 reference period, as well as (d) VIC simulated soil moisture anomalies (top 1m of soil) showing the

extents of the study domain (368–438N; 908–1058W) compared with (c) the USDM, which is based on discrete

severity classes D0–D4 shown in the inset, determined based on five key indicators: 1) PDSI, 2) NOAA/Climate

Prediction Center (CPC) simulated soil moisture, 3) U.S. Geological Survey (USGS) weekly streamflow percen-

tiles, 4) SPI, and 5) objective short and long-term drought indicator blends (percentiles); additionally, numerous

supplementary indicators including drought impacts and local reports frommore than 350 expert observers around

the country—hence the drought severities are comparable to VIC only in a qualitative sense.
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anomalies. All fields are standardized to their respective

1981–2010 climatologies. VIC simulates widespread soil

moisture deficits exceeding one standard deviation across

nearly all of the central United States, an area of maxi-

mum precipitation deficits and elevated surface temper-

atures having comparable standardized departures. VIC

soil moisture matches the main features of the USDM to

first order, including large soil moisture deficits over the

assessed 2012 extreme event, to exceptional drought re-

gions from Nebraska to Oklahoma. For the continental

United States as a whole, VIC and the USDM are in

excellent agreement, with both indicating that the ex-

treme drought in the midsection of the continent is en-

veloped by normal soil moisture conditions in the Pacific

Northwest and the Southeast.

To further assess robustness and representativeness of

the VIC soil moisture simulation, a 2002–13 time series

for the area averages of the central Great Plains box of

Fig. 1d are constructed. Three soil moisture products are

compared through time in Fig. 2, including simulations

fromVIC and ULM—each driven by identical observed

meteorology—aswell as the remotely sensed estimate of

terrestrial water anomalies from GRACE, compared

alongside the gridded precipitation measurements. A

key result is confirmation of the realism in VIC’s simu-

lated soil moisture variability by the wholly independent

GRACE estimated land moisture variability. The ULM

standardized soil moisture anomalies provide a measure

of structural uncertainty that arise from different model

physics. These track VIC (and GRACE) closely and,

despite several missing months in the GRACE data, the

simulated monthly anomalies exhibit a temporal corre-

lation of 0.86 and 0.85 during 2002–13 for VIC and

ULM, respectively. The ULM exhibits a slightly smaller

overall sensitivity than VIC, as indicated by its lower

interannual variability, with simulatedmonthly standard

deviations of 27.6mm month21 (ULM) and 44.4mm

month21 (VIC) encapsulating the GRACE variability

(37.9mm month21).

Several features of the Great Plains 2012 drought

event set it aside from other dry periods during 2002–13.

First, soil moisture conditions in 2012 (by almost all in-

dicators) experienced their most severe deficits. The

event was characterized by a rapid onset, apparently

associated with a marked drop in precipitation in late

spring 2012, although it is worth noting the lag between

precipitation and soil moisture deficits. Also, although

not shown in Fig. 2, we note that spring 2012 surface

temperatures were record-setting over the Great Plains

and that this condition may also have contributed to

sudden drought onset, as will be analyzed subsequently.

Another salient feature of the 2012 event was a general

abundance of land surface moisture that preceded the

2012 summer drought (2007–11 was a prolonged moist

period). Finally, 2012 can be contrasted with the 2006

drought, which was preceded by a multiyear dry state.

Thus, this time series raises several questions about the

relationship between antecedent moisture and sub-

sequent meteorological conditions with drought during

May–August 2012.

A longer historical context since 1950 reveals that the

2012 summer drought, while experiencing extreme sea-

sonal temperature and precipitation departures, did not

experience commensurate extreme soil moisture de-

partures. We interpret this difference in meteorological

drivers and land surface conditions to reflect the impor-

tance of antecedent conditions, since unlike 1956, which

was the most severe simulated soil moisture deficit and

was preceded by three dry years, 2012 was preceded by

neutral moisture conditions. This is indicated by the

FIG. 2. Monthly anomalies (2002–13) for observed precipitation (on the right ordinate) and

GRACE, ULM, and VIC terrestrial water anomalies (on the left ordinate) averaged over the

Great Plains domain.
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scatter relations on Fig. 3, which show each year’s mean

May–August (MJJA) conditions (1950–2013). Note es-

pecially that the summer temperature and precipitation

departures in 2012 were each appreciably greater than

during any prior summer (Fig. 3a). The extreme tem-

peratures of 2012 are consistent with the extreme rainfall

deficits through the physical driving of the former by the

latter, as revealed by the historical inverse relationship

between the two variables (R520.53). The possibility of

nonstationarity in these variables cannot be discounted,

although neither temperature nor rainfall exhibits ap-

preciable trends during summer over this region.

This combined P–T severity in 2012 forms the basis for

asking how much the lack of precipitation and the high

surface temperatures each contributed to drought severity

in 2012, as indicated by their contributions to soil moisture

depletion. A useful heuristic framework for exploring this

issue is to consider the magnitude of the sensible to latent

surface flux, known as the Bowen ratio B:

B5
SH

LH
, (1)

where SH is the sensible heat flux and LH is the latent

heat flux, terms that are analyzed in more quantitative

manners in the subsequent section. Suffice it here to

simply note that an important effect of prolonged pre-

cipitation deficits is to reduce surface moisture and the

associated upward turbulent flux of latent energy, which

is compensated for by an increased SH (i.e., surface

warming). Figure 3b shows the clear relationship between

precipitation and soil moisture (R 5 0.62), and an even

tighter relationship between LH and P (R 5 0.79) in

Fig. 3d. As a consequence, in the absence of rainfall and

thus a reduction in surface moisture, a greater fraction of

incoming solar radiation is balanced by increased upward

turbulent SH, thereby leading to high surface tempera-

tures. This link is illustrated by the relationship between

soil moisture and surface temperature in Fig. 3c (R520.41).

While these are useful qualitative perspectives on why

droughts and heat waves are often coincident, they do

not indicate the magnitude of the soil moisture deficits

that occur during droughts owing to high temperatures,

or for that matter whether high temperatures alone can

drive drought conditions of the magnitude witnessed

during historical events.

Historical Great Plains droughts provide an in-

teresting counterpoint to the event in 2012. Note espe-

cially that, based on the VIC simulations, the summer of

1956 likely experienced the most severe summertime

soil moisture deficits over the last 64-yr period, nearly

double the severity of the soil moisture deficits of the

2012 event (cf. red and green circles in Fig. 3b). This

despite the fact that summer 2012 was hotter and ex-

perienced greater rainfall deficits. The analysis reveals

the important role of antecedent conditions. In partic-

ular, 1956 was the last year in a string of dry years over

the Great Plains that rivaled the Dust Bowl period in

some areas, whereas the 2012 case was preceded by

relatively moist period as detailed above. Figure 4 il-

lustrates the VIC simulated time–depth soil moisture

contour for the period during January–December 2012.

Note that the soil deeper than 1m was relatively moist

through April 2012. An unusually hot spring appeared

to contribute to modest drying in the near-skin layers

during spring. However, the principal drying in the up-

per layer occurs rapidly in May, the first month of failed

rains, with a much more muted response below 1-m

depth. Indeed, the VIC simulations indicate that the

deep layer did not become abnormally dry until July, at

which time the top layer soil moisture had already

achieved an anomaly of greater than 22 standardized

departures. Overall, soil drying progresses from shallow

layers to deeper (ULMqualitatively similar, not shown).

The surface and deepest soil layers are out of phase by

several months, whereby surface soil moisture largely

FIG. 3. Seasonal (MJJA) temperature, precipitation, and VIC-simulated soil moisture and latent heat flux (1950–2013) expressed as

standardized anomalies (1981–2010 reference period) for theGreat Plains domain.Note the 2012 drought (red), a severe drought in recent

memory (1988; orange), as well as the most severe soil moisture deficits during this period (1956; green), which occurred after three

consecutive years of very dry conditions, highlighting the contributions of antecedent conditions for the most intense droughts.
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recovers by the end of 2012, while the deepest layer

becomes progressively drier carrying the memory of the

summer drought into the following winter.

b. Sensitivity experiments isolating temperature and
precipitation impacts on drought

To quantify the role of precipitation and temperature

in drought severity, two synthetic simulations are run in

which either precipitation or temperature is set to cli-

matological values while the other variable fluctuates as

observed. The resulting soil moisture anomalies from

each experiment are compared against the baseline sim-

ulation. The monthly evolving soil moisture, expressed in

standardized anomalies, is examined for the 2012 drought

event in Fig. 5. The key results regarding meteorological

driving of the 2012 drought are as follows: 1) the majority

of soil deficits are driven by precipitation, 2) the simu-

lated soil moisture deficits are not extreme for any single

month (approximately 21.5 standardized departures)

even though precipitation deficits were a historical re-

cord (approximately 22.5 standardized departures), and

3) initial soilmoisture at 1May 2012was near normal, and

not unduly depleted as might have been surmised from

the record setting hot spring (Dole et al. 2014), although

we note the depth dependency of these influences as

suggested in Fig. 4.

Figure 6 presents the simulated soil moisture anom-

alies for August 2012. A visual comparison between

Figs. 1a and 1b and Fig. 1d confirms the control of

precipitation on soil moisture conditions during the

2012 drought. The baseline simulation yielded an Au-

gust 2012 Great Plains soil moisture anomaly of 21.50

standardized departures, while the precipitation-only

simulation yields 21.21 and the temperature-only

simulation yields 20.46 standardized departures, re-

spectively. The superposition of the anomalies from the

two synthetic cases slightly exceeds the baseline (1.67.
1.50), suggesting nonlinearity, with the same disparity

observed for the MJJA period. Overall, the results in-

dicate an approximately 2.5:1 ratio of precipitation rel-

ative to temperature in terms of contribution to total

column soil deficits in 2012 (2.63:1 5 72.5%). This ex-

periment was repeated with ULM confirming a pre-

cipitation dominance, albeit even to a greater degree,

exhibiting a smaller anomaly for the baseline (1.44

standardized anomalies) with precipitation and tem-

perature contributions at an approximate 4:1 ratio, re-

spectively (4.11:1 5 80.4%).

Recalling that temperature and precipitation are

strongly (inversely) correlated over the Great Plains in

summer (see Fig. 3), with temperature being principally

(although not exclusively) a response variable to pre-

cipitation driving of the surface energy balance, the in-

ference of the role of precipitation in drought generation

is likely understated in the above synthetic experiments

for the 2012 event. To quantify this effect, an additional

FIG. 4. Monthly profiles of VIC standardized soil moisture anomalies during 2012 computed

relative to 1981–2010 reference; nodes are calculated as themean depth of eachmodel soil layer

whereVIC has three layers. The transition from left to right portrays the soil drying progressing

from shallower to deeper layers.
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simulation was performed in which the monthly varying

regression of temperature on precipitation variability

was removed from the raw temperature time series at

each point. This residual temperature data were then

used to drive a new synthetic simulation, the results of

which (not shown) indicated that roughly half of the

temperature impact indicated in Fig. 6b is itself symp-

tomatic of precipitation driving.

For both of the above cases, it is important to note that

standardized anomalies were chosen for convenience in

presenting and comparing among different fields. Yet,

our calculations indicate that soil moisture becomes

non-Gaussian for the months July–December according

to the Shapiro–Wilkes test (p 5 0.05), having a positive

skew in thesemonths. The positive skew has the effect of

compressing negative standardized anomalies, making

them appear less severe than reality. We explore this

further below by showing soil moisture percentiles in

addition to standardized anomalies as the former are

insensitive to skew or assumed distributions.

c. General characteristics of Great Plains droughts

Our analysis of the 2012 event raises a variety of

questions about the physics of Great Plains drought and

the generality of those findings concerning the relation

of precipitation, temperature, and soil moisture. For

instance, what is the sequence of meteorological con-

ditions that typically leads to extreme soil moisture de-

pletion and hence to more severe droughts? Does the

relationship between soil moisture and meteorological

conditions change for more extreme droughts compared

to milder droughts? And, from a perspective of antici-

pating drought, what is the inherent memory of soil

moisture and are there antecedent conditions that ren-

der Great Plains drought predictable?

These questions are not addressable from the histor-

ical observations alone, for which too few samples of

severe drought exist. The paper therefore turns to cou-

pled atmosphere–land climate simulations using a large

ensemble of historical AMIP-style experiments. We

examine a collection of severe drought events drawn

from the available 1050 years of model simulations, and

stratify those by various indices of precipitation deficits

and high temperature to explore soil moisture depletion

behavior. Figure 7 assesses the quality of the ECHAM5

annual cycle of precipitation (top) and surface temper-

ature (bottom). The model reproduces the distinct

spring–early summerwet season, having aMaymaximum

as observed. Overall, the model’s average May–August

rainfall is about 15% less than observed, although the

observed monthly values reside within the sampling

variability. Surface temperatures are warmer than ob-

served, and during summer are roughly 18–28C warmer

than observed, a bias that is inconsistent with sampling

error.

With a principal goal to diagnose the land surface

sensitivity to meteorological forcing, we use the GCM

soil moisture directly based on its land model, and also

conduct a parallel offline VIC simulation (VIC-GCM)

driven by the GCM’s meteorology. Figure 8 diagnoses

the long-term memory of soil moisture anomalies (after

removing the seasonal cycle), demonstrating the con-

sistency among the LSMs of ECHAM5, VIC-GCM,

and the observed-meteorology-driven VIC simulations.

Within the uncertainty of sampling, the autocorrelation

drops to 0.5 betweenmonths 5 and 6; however, each case

FIG. 5. Monthly standardized anomalies (1981–2010 reference) for observed precipitation

(blue dashed) and temperature (orange dashed) for 2012, with baseline VIC simulations using

observed meteorology in black, with precipitation impacts isolated through driving VIC with

temperature climatology (solid blue) and temperature impacts isolated using precipitation

climatology (solid orange) also shown.
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has statistically significant autocorrelation (a 5 0.05)

beyond 18 months.

Given the strong seasonal cycle of Great Plains cli-

matological precipitation with a single late spring peak,

Fig. 9 shows soil moisture autocorrelations for two dif-

ferent start months—one immediately before the wet

season (March initial month) and the other immediately

after (October initial month). The results indicate that

soil moisture memory is appreciably disrupted by

forthcoming rainy season precipitation (Fig. 9, top), with

autocorrelation becoming statistically insignificant (a5
0.05) after 8 months for all cases. Alternatively, soil

moisture is more persistent in the aftermath of the rainy

season (Fig. 9, bottom) exhibiting statistically significant

autocorrelation (a5 0.05) for 10 months for all models.

As such, soil moisture predictability based solely on its

autocorrelation will be strongly seasonally dependent,

having greater predictive skill from initialized states in

late summer than from initialized states in late winter.

The models ECHAM5 and VIC-GCM capture this key

characteristic of the soil moisture autocorrelation, but

have a slightly greater persistence than the observa-

tionally driven soil moisture ahead of the wet season

(note that the observational run is within the model

ensemble spread). The greatest difference in persistence

between the two starting months occurs between months

3 and 6, which are lag times especially relevant for seasonal

forecasting.

Aside from the soil moisture memory, additional

predictability will emerge if the meteorological drivers

FIG. 6. Map of monthly August standardized anomalies (1981–2010 reference) for isolated

(top) precipitation and (bottom) temperature impacts that can be compared against Fig. 1d, to

illustrate the dominant influence of precipitation on soil moisture deficits. The seasonal (MJJA)

anomalies are listed directly on the plot for VIC, relative to the 1.40s anomaly of the baseline

2012 simulation.

15 SEPTEMBER 2016 L I VNEH AND HOERL ING 6791



of the land surface are themselves predictable. An im-

portant factor driving meteorological variability over

the Great Plains is ENSO (e.g., Hoerling et al. 2014),

and it is reasonable to expect that ENSO-related me-

teorological signals will be a key predictor for soil

moisture variations. ECHAM5 has a realistic pre-

cipitation response to ENSO over the Great Plains, as

confirmed by a comparison of seasonal precipitation

regressed upon a Niño-3.4 SST index for the model and

for observations from the Global Precipitation Clima-

tology Centre (GPCC; Schneider et al. 2014). The

comparisons (see Figs. S1 and S2 in the supplemental

material) indicate a May–August wet signal during El

Niño and confirm that ECHAM5 captures essential

seasonal ENSO climate impacts over the Great Plains.

Althoughour purpose here is not to assess thepredictability

FIG. 7. Mean monthly meteorology (1979–2013) over the Great Plains domain for obser-

vations (Livneh et al. 2015) and 30-member ensemble mean ECHAM5 values (white bars),

where error bars denote minimum and maximum member values.

FIG. 8. Monthly lag autocorrelation of soil moisture comparing monthly anomalies of VIC

driven by observed meteorology (1979–2013) with both the soil moisture from the 30-member

ECHAM5 ensemble and the VIC driven by ECHAM5meteorology (VIC-GCM) for the same

period over the Great Plains domain; error bars denote minimum and maximum member

values; all models have significant (a 5 0.05) autocorrelation beyond 18 months.
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of ENSO itself, we merely note that the potential pre-

dictability may entail a useful discrimination of high

and low soil moisture based on ENSO phase. This will

demonstrated subsequently (see Fig. 13) where we

stratify the dry soil moisture occurrences during summer

according to ENSO phase, and show a nearly threefold

increase in severe low soil moisture states whenENSO is

in its cold (La Niña) phase compared to its warm (El

Niño) phase.
Aside from these important considerations of drought

predictability, it is important to address first the physics of

the surface energy exchange that characterize drought

situations. Here we diagnosis the near-surface energy

exchange during May–August from the ECHAM5 and

VICmodel data, with a particular focus on the lowest soil

moisture cases. Figures 10a and 10b show the scatter re-

lations between soil moisture and precipitation and

temperature, respectively. We comingle the values from

VIC-GCM with the ECHAM5 land model results for

1050 years of data. The sample of 1%of the lowestMJJA

precipitation is shown in red circles for ECHAM (red

crosses for VIC-GCM). A general linear relationship

between soil moisture and precipitation is apparent as

highlighted previously from the observations in Fig. 3

(R 5 0.62), which is greater for the ECHAM ensemble

(R 5 0.77). By contrast, a weaker linear relationship

exists for soil moisture and temperature in the observed

case 1979–2013 (R5 20.41), whereas this relationship is

notably stronger even than precipitation for the ECHAM

ensemble (R5 0.82). Despite this stronger relationship, a

qualitative examination of Fig. 10b shows positive tem-

perature departures from the linear model during the

most severe soil moisture deficits, suggesting that ex-

treme heating can nevertheless result from dry soil

conditions.

The physics of the soil moisture–temperature re-

lationship is fundamentally tied to the surface turbu-

lent energy exchange, as indicated in Fig. 10c. The

Bowen ratio [see Eq. (1)] exhibits a strong nonlinear

relationship with soil moisture over the Great Plains—

latent heating vanishes rapidly (Bowen ratio increases

abruptly) as soil moisture deficits exceed 1 standard

deviation. This amplification of temperature extremes

(i.e., the occurrence of hot summers) is thus often a

symptom of the increased fraction of upward energy

flux apportioned to sensible rather than latent heating

during more severe soil moisture deficits. Both

ECHAM5 and VIC-GCM portray this tendency to-

ward enhanced summertime warming through excessive

sensible heating and reduced latent heating (Fig. S3),

with the largest anomalies occurring May–September,

peaking in July. The precise extreme sensitivity that

FIG. 9. As in Fig. 7, but formonthly soilmoisture lag autocorrelation starting in (top)March and

(bottom) October. Autocorrelation becomes statistically insignificant (a5 0.05) for VIC-GCM in

month 7 andECHAMandVIC driven by observations inmonth 8 for theMarch start (significance

threshold denoted by horizontal dashed lines and arrows colored by model), while all models

preserve significant autocorrelation (a 5 0.05) through 10 months for the October start.

15 SEPTEMBER 2016 L I VNEH AND HOERL ING 6793



occurs in any particular region will likely depend on

whether a region has a soil-moisture-limited ET regime or

an energy-limited ET regime, as was shown by Hirschi

et al. (2011) in a study that contrasted soil moisture deficit–

hot summer linkages over central versus eastern Europe.

A key aspect of our findings that builds on existing un-

derstanding of the physics of drought is that, as per land

model experiments, the direct effects of temperature on

soil moisture deficits are secondary to overall effects of

precipitation. Together with the energy balance calcula-

tions, extremes in surface temperatures from year-to-year

are thus shownherein to be principally a response to rather

than a driver of drought. This result does not address how

the character of droughts, and their associated heat waves,

will behave in a warmer world, a point we return to in

section 4.

Additional features of the surface energy balance are

that longwave radiation is strongly constrained by soil

moisture, consistent with strong temperature response to

precipitation conditions (Fig. 10e). Longwave radiation is

thus a braking mechanism on the surface temperature

response. By contrast, shortwave radiation anomalies

exhibit a somewhat inverted relationship (Fig. 10d).

Whereas there is increased shortwave radiation during

low soil moisture states as would be physically consistent

with an overall reduction in cloud cover accompanying

reduced precipitation, there is a considerable range in the

surface solar radiation among the sample of 1% driest

states. ECHAM5 simulates solar radiation that is gener-

ally above normal during drought conditions; however,

for some of the most severe droughts in the model, solar

radiation can be near normal. This implies that while all

those cases experience large precipitation deficits, overall

summer cloud cover need not be appreciably diminished.

In aggregate, net radiation is below average during soil

moisture–driven drought, which, though perhaps coun-

terintuitive, simply expresses the fact that high surface

temperatures during droughts lead to stronger longwave

cooling of the surface.

To examine the 1% lowest-MJJA-precipitation cases

occurring in ECHAM5 more closely, standardized soil

moisture anomaly time series are shown in Fig. 11,

corresponding to the red highlighted cases from Fig. 10.

For clarity the same traces are plotted in the inset as

FIG. 10. Comparison ofMJJA standardized anomalies for various states and fluxes on the ordinate axes betweenECHAM5 (circles) and

VIC (crosses) compared with soil moisture (abscissa), where the 1% lowest MJJA precipitation simulations are highlighted in red; all

radiation terms are net fluxes and are only included for ECHAM5, as it treats radiation explicitly. The Bowen ratio has a single extreme

point that falls above the ordinate at approximately 6.2s.
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ranked percentiles, illustrating that the apparent re-

covery in standardized soil moisture in August is an

artifact resulting from the positive skew in soil moisture

during the summer season. Importantly, the insert af-

firms that the soil moisture indeed reaches aminimum in

August, consistent with the extreme summer rainfall

deficit, and furthermore that the majority of driest

summers have antecedent low soil moisture conditions

in winter–early spring. This result can be understood by

considering the effects of two physical processes: 1) low

winter–early spring precipitation is itself commonly

followed by low late spring/summer precipitation, per-

haps via a low frequency ocean forcing (ENSO results

presented below) and thus implies a potential for

drought predictability; and 2) low winter–early spring

soil moisture acts to inhibit subsequent summer pre-

cipitation and thus implies a positive feedback between

soil moisture deficits and drought severity. To the extent

either or both are operating, then the physics of drought

shown in this figure speaks to predictability, which we

quantify below. The selection of these MJJA low pre-

cipitation cases is motivated by the observed 2012 situ-

ation where MJJA precipitation was the lowest in the

historical record. What is interesting here is that all (10

samples) had below-normal soil moisture preceding the

summer (i.e., in April), implying that 2012 was unusual

in that April 2012 soil moisture was estimated to have

been near normal. Perhaps of greatest relevance to the

physics of drought in Fig. 11 is the reduction in spread

among soil moisture traces between April and August—

in effect, low-precipitation summers can be preceded

by a great variety of antecedent conditions whereby the

summer precipitation exerts a strong control on soil mois-

ture as exemplified by the end-of-summer convergence.

An ancillary characterization of severe drought con-

ditions is presented in Fig. 12 in which the 10 highest-

MJJA-temperature traces are shown. This result clearly

shows that the hottest Great Plains summers have strong

signals of antecedent low soil moisture.When compared

to Fig. 11, the implication is that the very hot summers

have predictability from the monitored state of winter–

early spring soil moisture. This predictability of hot

summers is considerably greater than the predictabil-

ity of low precipitation summers. Of course, based on

the result of Fig. 11, the processes of having selected the

hottest Great Plains summers in the model is tan-

tamount to having selected very low precipitation

summers also, as temperature and precipitation are in-

herently inversely linked (Fig. 3). We count that exactly

3 out of the 10 traces in Figs. 11 and 12 are the same

cases. Unlike the precipitation case, hot summers are

more clearly preceded by dry springs with greater co-

herence in antecedent soil moisture. Strikingly, soil

moisture by the end of summer shows less convergence

for high temperature versus low precipitation cases (cf.

Figs. 11 and 12), highlighting that temperature has less

control on soil moisture than precipitation. This differ-

ence in drought signatures is confirmed in the percentile

plots. To quantify the seasonal predictability of extreme

drought more generally, we calculate the correlation

between the lowest 1% soil moisture summers (MJJA)

with their preceding spring [January–April (JFMA)]

condition resulting in a correlation value of R 5 0.89.

Despite this relatively high interseasonal correlation, we

FIG. 11. Monthly standardized anomalies of ECHAM5 (black) and VIC-GCM; anomalies computed relative to

1981–2010 reference; plotted are those simulationswith the 1% lowest precipitation during theMJJA season for the

1050 ensemble years, representing 10 simulations from each model; the insert shows the same data only plotted as

a percentile value since soil moisture becomes positively skewed by late summer.
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note that only 2 (out of 10) of the spring (JFMA) ex-

treme lowest 1% soil moisture cases are followed by

extreme 1% lowest soil moisture in the summer (MJJA),

indicating that soil moisture in the most extreme dry

regime (lowest 1%) in spring is likely to emerge from

this extreme state in the summer and does not offer

appreciable predictability of sustained extreme severity.

d. Analysis of predictability of drought development

To further understand sources for the predictability of

Great Plains drought implied in Figs. 11 and 12, we

stratify the ECHAM5 data into El Niño and La Niña
cases. Ten El Niño and ten La Niña years are identified

during the simulation period of 1979–2013 based on a

0.58C Niño-3.4 wintertime SST anomaly threshold for

four consecutive months. We analyze the antecedent

January–April land surface and meteorological condi-

tions that precede the occurrences of the lower quartile

May–August soil moisture conditions (i.e., summer

droughts; Figs. 13a–c), and also the upper quartile May–

August surface temperatures (i.e., hot summers; Figs.

13d–f). Recall that with a 30-member model ensemble,

the total sample size is 1050 years, and the quartile

subsample is for 262 drought years. If ENSO had no

influence on Great Plains summer conditions, then 70 of

those cases would be expected to be El Niños, 70 La

Niñas, and 122 ENSO neutral.

The vast majority of the summer drought events ex-

perienced antecedent dry soil moisture (Fig. 13a),

low precipitation (Fig. 13b), and high temperatures

(Fig. 13c), consistent with the extremes analysis shown

in the prior section. The severity of warm season

(MJJA) soil moisture deficits within the dry quartile

range shows a clear relationship with the severity of

preceding season moisture in Fig. 13a, explaining 27%

variance of subsequent summer soil moisture (R5 0.53),

with less explained from antecedent season precipitation

alone (;16%, Fig. 13b) and less still explained by tem-

perature (;8%, Fig. 13c).

The results in Fig. 13 further indicate that ENSO’s

phase significantly alters the probability of summer

Great Plains drought. La Niña more than doubles the

odds for climate conditions in winter that lead to severe

drought in summer. By contrast, El Niño induces a more

modest diminution of drought probability. Overall, the

ECHAM5 simulations indicate a 3.5-fold increase in the

odds of summertime severe drought during La Niña
compared to El Niño.
At least two mechanisms may be operating by which

ENSO affects Great Plains summer drought probabili-

ties. One is via its influence on variability of antecedent

conditions (soil moisture in particular) over the Great

Plains, with subsequent persistence. Note that our pre-

vious results indicated that March initial soil states

have a;0.5 lag correlation with soil moisture states into

summer (see Fig. 9), and as such ENSO-phase operates

on summer drought probability by setting the likelihood

for antecedent soil states. A second effect, which in

some situations combines with the first, is ENSO’s di-

rect influence on summertime meteorological condi-

tions over the Great Plains. Our analysis of the seasonal

variability of the model’s precipitation response to

ENSO reveals that the composite La Niña drying signal
that is prominent over the Great Plains in winter con-

tinues into summer whereas an El Niño summer wet

signal wanes (not shown). This is in part owing to the

typically longer lifetime of La Niña compared to El

Niño, thus permitting the former to have a more

FIG. 12. As in Fig. 11, but for 1% highest temperature.
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persistent and enduring influence on cumulative soil

moisture conditions by summer.

The severity of hot summers is less constrained by

antecedent conditions. For instance, preceding season

(JFMA) soil moisture explains only about 12% of vari-

ance of the summer temperatures within the upper

quartile range (Fig. 13d), and preceding season pre-

cipitation (7%) and temperature (5%) are even less

predictive. Figure 13 also illustrates that La Niña has an

appreciable greater effect than El Niño in altering the

odds for hot summers over the Great Plains. Overall, we

enumerate instances in which low soil moisture springs

(in the bottom 25%) precede low soil moisture summers,

finding this to occur in 62% of all cases, which suggests

potential predictability of sustained drought conditions.

Although our results indicate that ENSO phase mate-

rially influences the odds of severe drought and hot sum-

mers over the Great Plains, we note that any factor that

affects antecedent soil moisture acts to alter the sub-

sequent summertime drought likelihood. We analyzed

another long integration of the ECHAM5 model having

no interannual variability of SSTs and found that JFMA

soil moisture conditions in that set of experiments ex-

plained 16% variance of subsequent summer soil moisture

(down from 27% with ENSO) within the upper quartile

(R 5 0.40). The difference between these two sets of ex-

plained variances can be used to understand the impor-

tance of ENSO relative to other drivers of moisture

variability, such as land–atmosphere moisture feedbacks.

These antecedent dry states originated solely from internal

atmospheric variations, which, although unpredictable at

long leads, can generate detectable effects on land surface

conditions that in turn enhance the predictability of sum-

mertime drought.

4. Summary and discussion

The physics of Great Plains drought were explored

through an examination of the relationship between

meteorological drivers—precipitation and temperature—

and soil moisture deficits during the growing season

(MJJA). LSM simulations reproduced key features in

FIG. 13. Seasonal percentiles of summer (MJJA) (a)–(c) soil moisture and (d)–(f) temperature computed against preceding season

(JFMA) soil moisture, temperature, and precipitation, isolating the lowest 25% soil moisture years in (a)–(c) and highest temperature

years in (d)–(f) with data colored based on theNiño-3.4 index using anElNiño threshold of.0.58C andLaNiña index of,20.58C for four

consecutive months, listing the count of points in each phase, the correlation among points, and the statistical significance (p value) of the

slope of the points being different from zero. The El Niño years include 1983, 1987, 1988, 1992, 1995, 1998, 2003, 2005, 2007, and 2010; the

La Niña years are 1984, 1985, 1989, 1996, 1999, 2000, 2001, 2008, 2011, and 2012.
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both the U.S. Drought Monitor and GRACE terrestrial

water anomalies and ultimately showed that pre-

cipitation has driven the majority of Great Plains in-

terannual soil moisture variability since 1950. Energy

balance considerations point toward an even larger net

contribution of precipitation to soil moisture variability

because growing season temperature variability is itself

strongly driven by precipitation.

The 2012 Great Plains drought was placed in a his-

torical context relative to years since 1950 with meteo-

rological observations that were historically hot and dry

for the MJJA period. While high temperatures during

summer 2012 were record setting over the central Plains,

higher than in any summer since 1950, those observa-

tions alone do not provide a strong argument that the

drought itself was largely a consequence of the heat.

The reason is that precipitation was also a historical

anomaly, being the driest since 1950. We showed that

these joint extreme meteorological conditions were

consistent with a historical inverse P–T relationship for

this domain, the physics of which were shown to be

symptomatic of precipitation mostly driving tempera-

ture. A detailed land surface model diagnosis was con-

ducted using two LSMs to quantify the physics of the

drought with respect to the impact of each meteoro-

logical forcing and the surface energy balance. The re-

sult indicated that on the order of 72%–80% of the

central Great Plains soil moisture deficit during summer

2012 was attributable to precipitation forcing, which was

likely greater when taking into account the inverse

precipitation–temperature relationship.

The role of antecedent conditions for the 2012

drought was analyzed, and it was found that despite the

depletion of near-surface soil moisture by high early

spring temperatures, deep soil moisture was above

normal owing to prior wet winter conditions. Hydrologic

simulations confirmed that these somewhat favorable

deep column soil conditions in advance of the 2012

growing season (MJJA) likely prevented the event from

being more severe than it was. Further, the analysis in-

dicated that earlier events such as the multiyear 1950s

drought produced more severe soil moisture deficits,

and highlighted the importance of antecedent condi-

tions (i.e., carryover soil moisture storage).

The use of 1050 years of climate simulations repre-

sentative of recent climate conditions enabled a broader

examination of physics, confirming that growing season

droughts arise mainly from rainfall deficits, with tem-

peraturemostly a response variable through the response

of the surface energy exchange with the atmosphere.

Conversely, antecedent wintertime meteorological and

soil moisture conditions were shown to be of secondary

importance to growing season soil moisture. Greater soil

moisture persistence was exhibited following the wet

season—in October—as opposed to starting before the

wet season,March; this is an expression of thememory of

the soil moisture to large moisture inputs, relevant for

predictability.

The regional radiative balance revealed that drought

conditions are generally associated with negative net ra-

diation, driven by longwave radiative cooling. Addition-

ally, a highly nonlinear response in Bowen ratio was

observed, indicative of a quasi tipping point that occurs

during drought when the great majority of solar energy

goes into sensible heating of the land surface, consistent

with the previous statement that terrestrial longwave

emission dominates the surface energy balance during

drought.

Highlighting the 1% lowest-precipitationMJJA periods

strengthened the understanding of strong precipitation

control on the physics of soilmoisture evolution, inwhich a

great diversity of initial moisture states entering MJJA

(i.e., in April) closely converge by the end of the season.

Conversely, the 1% hottest MJJA periods displayed a

different character, with less convergence at summer’s

end, yet with greater similarity among events throughout

the MJJA period and even in preceding months. This

similarity among high-temperature droughts raised the

question of potential predictability based on knowledge of

antecedent moisture and meteorology.

The last phase of the analysis explored seasonal

drought predictability, concluding that antecedent soil

moisture had greatest the predictability potential, with

approximately 27% of the variance of MJJA soil mois-

ture explained by JFMA conditions. Temperature and

precipitation were next most predictive, respectively.

Drought conditions were more common during La Niña
phases in this region such that removing the ENSO

variability from the GCM simulations yielded a re-

duction in interseasonal soil moisture correlation by

about 0.1 points.

a. Discussion of Great Plains drought sensitivity to
climate change

How might land surface moisture respond to climate

change? To explore the sensitivity for drought under dif-

ferent climate states, we superposed various synthetic cli-

mate signals upon the observed historical meteorology and

reran VIC. Although the synthetic climate signal was ap-

plied over the entire Livneh et al. (2015) domain, only the

Great Plains was analyzed here. The results shown in

Fig. 14 look specifically at the 2012 event under imposed

climate signals, both for reduced precipitation (by 10%

and 20%) and for higher temperatures (by 18, 28, and 48C).
The land surface responses indicate greater soil moisture

deficits (compared to the actual 2012 historical simulation),
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with greater sensitivities to precipitation reductions than to

temperature increases consistent with previous studies

(e.g., Sheffield andWood 2008). Temperature sensitivities

are slightly asymmetric about the baseline conditions

particularly for the 248C anomaly case. Additional ULM

simulations exhibited similar asymmetry with overall

slightly diminished sensitivities relative to VIC. Higher

temperature scenarios suggest that under warmer cli-

mate conditions, a repeat of the 2012 drought would

have resulted in soil moisture deficits enhanced by ap-

proximately 0.5 standardized departures or less. For

reference, the Fifth Assessment Report (AR5) repre-

sentative concentration pathway 8.5 (RCP8.5) ensemble

average shows a statistically significant temperature

warming of approximately 48C for the Great Plains do-

main, near the magnitude of our most extreme warming

scenario, while the range of the precipitation changes in

Fig. 14 covers the ensemble spread of AR4 projections

for themiddle and late twenty-first century (IPCC 2013),

and additionally span roughly the range of observed

multidecadal precipitation variability since 1900.

For all synthetic climate changes scenarios considered

herein, the prominent seasonal cycle of Great Plains

climatological precipitation (i.e., the MJJA wet season)

was found to partially ‘‘reset’’ seasonal soil moisture

deficits by the end of each year. Nonetheless, an overall

annual drying signal of the land surface resulted, in-

dicating that moisture deficits will likely be exacerbated

by warming temperatures, consistent with previous

studies based on the PDSI and SPEI (Cook et al. 2014)

as well as GCM soil moisture (Cook et al. 2015). Other

studies focusing on the relationship between simulated

precipitation and evaporation (Seager et al. 2007, 2013,

Dai 2013; Fu and Feng 2014; Scheff and Frierson 2015)

derived from Coupled Model Intercomparison Project

(CMIP) models also project enhanced likelihood for

future drought. Cook et al. (2014) and Zhao and Dai

(2015) both decompose drought into precipitation

and evaporative components; however, the influence of

temperature is implicit in evaporation changes, rather

than explicit as in the current study. Williams et al.

(2015) decomposed drivers of the contemporary

FIG. 14. Monthly standardized anomalies for 2012 (relative to 1981–2010) for VIC simula-

tions using observed meteorology in black, with (top) synthetic precipitation scaling shown in

blue shading and (bottom) synthetic temperature deltas shown in orange shading applied

relative to observations for all months respectively.
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California drought (2012–14) using PDSI finding

precipitation as the dominant driver but reporting

an approximately 8%–27% contribution from high

temperatures, a number that is comparable to values

reported here for the 2012 Great Plains droughts.

Williams et al. (2015) and the present study generally

stand alone among those aforementioned in terms of

decomposing drought into its precipitation and tem-

perature drivers, as others generally leave evaporative

demand for evaporation, PET (comprising temperature,

humidity, and radiative energy), as a single composite

quantity.

b. Conclusions

The major theme of this manuscript was to clarify the

physics between drought (via soil moisture deficits) and

more readily observable meteorological phenomena:

precipitation and temperature. The results offer insights

into these relationships, indicating that precipitation is

the dominant driver of soil moisture deficits in the Great

Plains. The meteorological conditions favorable for

summertime Great Plains drought are made more likely

by the La Niña phase of ENSO, although ENSO is not a

necessary condition.

How can the observed 2012 Great Plains drought be

understood in the context of the general characteristics

of severe summertime drought over the region identified

in the current paper? One factor operating in 2012 was a

La Niña event, which would have elevated severe

drought odds. Early spring was also hot. However, LSM

simulations indicated that antecedent soil moisture was

not low in 2012, and thus a major factor for drought

development was not in place by late spring 2012. In this

sense, the occurrence of severe drought over the Great

Plains was somewhat atypical in that initial soil condi-

tions were not an appreciable factor. The key element

was the extreme (record setting) deficit in summertime

rains. The La Niña event was prolonged and persisted

through summer 2012, and thus was likely a factor

contributing to the low rainfall, as found in Hoerling

et al. (2012). In this latter sense, the 2012 drought

shared a common attribute with those found in the ca-

nonical situation.

The regional LSM approach applied here was

designed to isolate the impact of distinct drought drivers

over a relatively small domain, the Great Plains. This is

in contrast to global CMIP-based studies in which the

evolution of numerous independent variables makes

direct interpretation of local drought drivers less

straightforward. The Great Plains–focused scope of this

study has enabled us to quantitatively decompose the

influences of precipitation and temperature individually

on drought. Regarding explicit assessments of temperature

and precipitation change impacts on land surface mois-

ture balances, such a study has largely been lacking in

the literature [the work of Williams et al. (2015) not-

withstanding], but one which is needed because there

exists greater consensus among models regarding pro-

jected temperature changes as compared to precipitation

changes. As such, isolating the effect of temperature alone

on land surface conditions has potentially high predictive

value concerning future drought regimes. Based on our

results we speculate that temperature warming for the

likely ranges of 28–48C anticipated by the mid-twenty-first

century will enhance land surface drying, while intrinsic

rainfall variability will remain important and likely be the

leading factor in land surface moisture variability for

coming decades.

Although seasonal predictability of summer drought

over the Great Plains was found to be sensitive to an-

tecedent land surface conditions, the majority of the

ensuing summertime soil moisture variance remains

unexplained and would require knowledge of summer-

time rainfall variations in particular. Knowledge of

ENSO phase may provide some further information on

drought likelihood, although a more detailed analysis of

the joint probability with antecedent conditions is re-

quired. Coordinated use of large-scale meteorological

and soil moisture observations may enable follow-up

analyses to further quantify the physical relationships

studied here. Future efforts should be directed at

transferring these methods to explore drought likeli-

hood under future climate to other regions of interest,

particularly those near the threshold of more frequent

drought, such as the U.S. Southwest and California.

Last, more detailed analysis into the role of projected

changes cold-season processes (i.e., snowpack) and

groundwater–surface water interactions on drought se-

verity is recommended as many global regions rely on

these sources for water supply.
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APPENDIX

Description of Models

a. The Variable Infiltration Capacity model

As described by Shukla et al. (2014) and Gao et al.

(2010), the VIC model (Liang et al. 1994) has been

widely used at a global scale and has been demon-

strated to accurately capture the hydrology of different

regimes (Nijssen et al. 1997, 2001; Maurer et al. 2002),

including drought (e.g., Sheffield and Wood 2008;

Sheffield et al. 2012). Distinguishing characteristics of

the VIC model include subgrid variability in land

surface vegetation classes (i.e., a mosaic of land cover);

subgrid variability in the soil moisture storage capacity

(statistically represented); nonlinear drainage from

the lower soil moisture zone (base flow); and the in-

clusion of elevation bands in topographically complex

regions that allows for orographic precipitation gra-

dients and temperature lapse rates to be applied.

Evapotranspiration is computed from a dynamically

computed Penman–Monteith PET from which com-

ponents of soil, canopy evaporation, and transpiration

are estimated based on resistance terms that are a

function of soil and plant stress. A full energy and

water balance snow model (Andreadis et al. 2009) that

simulates both canopy and subcanopy snowpack evo-

lution is used.

In this study, the VIC model was built at a 0.58
(;50km) spatial resolution. Soil parameters were de-

rived from Livneh et al. (2013) for the continental U.S.

(CONUS) domain and were upscaled from 0.06258 to
0.58 using areal averages. However, soil depths for the

three soil layers were held constant within the Great

Plains domain, so as not to introduce artificial disconti-

nuities in soil response. TheUniversity ofMaryland land

cover classification system is used to assign different

vegetation types (and bare soil) to each grid cell, which

were upscaled directly from 0.06258 to 0.58, since VIC

allows for a mosaic of land cover.

b. The ECHAM5 model

The ECHAM5 model takes part of its name ‘‘EC’’

from the European Centre for Medium-RangeWeather

Forecasts (ECMWF) model (Roeckner et al. 1989) and

‘‘HAM’’ from Hamburg, Germany. The details of

ECHAM5 are summarized by Roeckner et al. (2003).

However, briefly it is a general circulation model

focusing on the coupling between diabatic processes

and large-scale circulations, both of which are ulti-

mately driven by radiative forcing (i.e., factors al-

tering the balance of incoming and outgoing energy

in the Earth–atmosphere system). The model consists

of a dry spectral-transform dynamical core, a transport

model for scalar quantities other than temperature and

surface pressure, a suite of physical parameterizations for

the representation of diabatic processes, and boundary

datasets for externalized parameters, such as trace gas

and aerosol distributions, tabulations of gas absorp-

tion optical properties, temporal variations in spectral

solar irradiance, land surface properties, etc. (Stevens

et al. 2013).

In this study, the ECHAM5 model was implemented

at a 0.758 resolution with a single vertical layer, with

variable storage capacity. The soil scheme within the

model is therefore a single bucket in which the storage

capacity of the soil is represented by a set of values

with a probability density function (Roeckner et al.

2003). A ‘‘storage capacity distribution curve’’ is defined

that represents the fraction fws of the grid cell in which

the storage capacity is less or equal to current soil water

storage hws:

f
ws
5 12 (12 h

ws
/h

cws
)b , (A1)

where hcws is the maximum soil water storage and b is a

shape parameter that defines the subgrid-scale charac-

teristics of the basin or grid cell.

c. The Unified Land Model

The ULM (Livneh et al. 2011) represents the merger

of two commonly used models, taking the vegetation,

snow model, and evapotranspiration schemes from the

Noah LSM [used in most of the National Oceanic and

Atmospheric Administration (NOAA) atmospheric

models] and merging them with the soil moisture

accounting scheme from the Sacramento soil mois-

ture accounting model (Sac; Burnash et al. 1973), the

primary hydrologic prediction model within the Na-

tional Weather Service. In summary, ULM uses a bulk

surface layer with a single (dominant) vegetation class

and snowpack [updated by Livneh et al. (2010)], over-

lying the conceptual, bucket-style soil representation of

Sac. The vegetation canopy cover varies spatially and

temporally by amonthly specified greenness fractionGvf

(Gutman and Ignatov 1998), derived from the photo-

synthetically active portion of leaf area index (LAI)

based on a monthly climatology of AVHRR satellite

data. Model calibrations and regionalization were car-

ried out by Livneh and Lettenmaier (2012) and Livneh

and Lettenmaier (2013) on over 200 river basins in the

CONUS domain. In this analysis ULM was run at the

same spatial resolution as VIC (0.58) using of two soil

zones (upper and lower) and five water storage

‘‘buckets.’’
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Similar to Livneh et al. (2014), the Mountain Micro-

climate Simulation Model (MT-CLIM) version 4.3

(Thornton et al. 2000) was applied to estimate the full suite

ofULMrequired forcings, derived fromdaily precipitation

andminimumandmaximum temperatures. Toprovide the

models with subdaily (3 hourly) temperature and derived

forcings, a spline was applied to daily minimum and

maximum temperatures to estimate the diurnal cycle and

precipitation partitioned uniformly. An analysis per-

formed byMaurer et al. (2002) into the impact of the same

temperature spline and uniform precipitation assumptions

found that neither had a substantial impact on the long-

term average diurnal cycle of the energy budget or the

partitioning of precipitation into runoff and evapotrans-

piration. These were output from the VIC preprocessor

that estimates downwelling radiation and vapor pressure

from the aforementioned quantities, to ensure consistency

across models. Livneh et al. (2014) conducted compari-

sons of derived humidity and downwelling shortwave

and longwave radiation with energy budget towers at the

NiwotRidgeLongTermEcologicalResearch site (Boulder

Creek; http://culter.colorado.edu/NWT/) and Senator Beck

basin (Uncompaghre River; www.snowstudies.org). They

computed small net biases but larger mean absolute errors,

suggesting that derived quantities represent long-term

(i.e., greater than daily) forcing well, but would not

capture larger subdaily anomalies.
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